
3. Rings of integers.

In this section we introduce for an arbitrary number field an analogue of the subring Z of
Q. Combining this with the results of section 1, we obtain an analogue of the inclusion
maps

Z ⊂ Q ⊂ R ⊂ C.

For a number field F it is the following sequence of subrings

OF ⊂ F ⊂ FR ⊂ FC.

where FR and FC are the rings introduced in section 1. The ring OF is the ring of integers
of F .

Definition. Let F be a number field. An element x ∈ F is called integral if there exists
a monic polynomial f(T ) ∈ Z[T ] with f(x) = 0. The subset of integral elements of F is
denoted by OF .

It is clear that the integrality of an element does not depend on the field F it contains.
An example of an integral element is i =

√
−1, since it is a zero of the monic polynomial

T 2 + 1 ∈ Z[T ]. Every n-th root of unity is integral, since it is a zero of Tn − 1. All
ordinary integers n ∈ Z are integral in this new sense because they are zeroes of the
polynomials T − n.

Lemma 3.1. Let F be a number field and let x ∈ F . the following are equivalent
(a) x is integral.
(b) The minimum polynomial fxmin(T ) of x over Q is in Z[T ].
(c) The characteristic polynomial fxchar(T ) of x over Q is in Z[T ].
(d) There exists a finitely generated subgroup M 6= 0 of F such that xM ⊂M .

Proof. (a)⇒(b) Let x be integral and let f(T ) ∈ Z[T ] be a monic polynomial such that
f(x) = 0. The minimum polynomial fxmin(T ) divides f(T ) in Q[T ]. Since the minimum
polynomial of x is monic, we have f(T ) = g(T )fxmin(T ) with g(T ) ∈ Q[T ] monic. By
Gauss’ Lemma (Exer.3.1) both fxmin(T ) and g(T ) are in Z[T ] as required.
(b)⇒(c) This is immediate from Prop.2.7(c).
(c)⇒(d) Let n be the degree of fxchar(T ) =

∑
i aiT

i. Let M be the additive group generated
by 1, x, x2, . . . , xn−1. The finitely generated group M satisfies xM ⊂M because x ·xn−1 =
xn = −an−1xn−1 − . . .− a1x− a0 ∈M .
d)⇒(a) Let M 6= 0 be generated by e1, e2, . . . , em ∈ F . Since xM ⊂M there exist aij ∈ Z
such that

xei =
m∑
j=1

aijej for all 1 ≤ i ≤ m,

in other words 
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm



e1
e2
...
em

 = x


e1
e2
...
em

 .
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This implies that the determinant det(aij − x · Id) = 0. Since M 6= 0, at least one of the
ei is not zero. Therefore x is an eigenvalue and the monic polynomial

f(T ) = det(aij − T · Id) ∈ Z[T ]

vanishes in x. This proves the lemma.

Proposition 3.2. The set OF of integral elements of a number field F is a subring of F .

Proof. It suffices to show that x ± y and xy are integral whenever x and y are integral.
Let therefore x, y ∈ F be integral. By Lemma 3.1 there exist non-zero finitely generated
subgroups M1 and M2 of F , such that xM1 ⊂ M1 and yM2 ⊂ M2. Let e1, e2, . . . , el
be generators of M1 and let f1, f2, . . . , fm be generators of M2. Let M3 be the additive
subgroup of F generated by the products eifj for 1 ≤ i ≤ l and 1 ≤ j ≤ m. Then we have
(x± y)M3 ⊂M3 and that xyM3 ⊂M3. This proves the proposition.

Proposition 3.3. Let F be a number field. Then there exists for every x ∈ F an non-zero
integer in Z so that mx is contained in the ring of integers of OF . In particular, F is the
field of fractions of OF .

Proof. Let f(X) = Xn +an−1X
n−1 + . . .+a1X+a0 ∈ Q[X] be the minimum polynomial

of x. Let m be a common denominator of the coefficients ak. In other words, m 6= 0 and
mak ∈ Z for 0 ≤ k ≤ n− 1. Then we have

mnf(X) = (mX)n + an−1m(mX)n−1 + . . .+ a1m
n−1(mX) + a0m

n.

Substituting Y = mX we obtain a monic polynomial in Y with coeffients in Z. So its zero
y = mx is integral and hence in OF . This proves the first statement. The second is an
immediate consequence.

It is, in general, a difficult problem to determine the ring of integers of a given number
field. According to Theorem 2.4, every number field F can be written as F = Q(α) for
some algebraic number α. A similar statement for rings of integers is, in general false:
there exist number fields F such that OF 6= Z[α] for any α ∈ OF . For example, the ring
of integers of the field Q( 3

√
20) is Z[ 3

√
20, 3
√

50]. See exercises 3.7 and 3.8 for a proof that
this ring is not of the form Z[α] for any α ∈ Q( 3

√
20).

For quadratic fields however, the rings of integers are generated by one element and
the calculations are rather easy:

Proposition 3.4. Let F be a quadratic number field. Then
(a) There exists a unique squarefree integer d ∈ Z such that F = Q(

√
d).

(b) Let d 6= 1 be a squarefree integer. The ring of integers OF of F = Q(
√
d) is given by

OF = Z[
√
d] if d ≡ 2 or 3 (mod 4),

= Z[
1 +
√
d

2
] if d ≡ 1 (mod 4).
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Proof. (a) For any α ∈ F − Q one has that F = Q(α). The number α is a zero of an
irreducible polynomial f(T ) ∈ Q[T ] of degree 2. This means that the discriminant d of
f(T ) is not a square and we have F = Q(

√
d). The field Q(

√
d) does not change if we

divide or multiply d by squares of non-zero integers. We conclude that F = Q(
√
d) for

some squarefree integer d.

Suppose Q(
√
d) = Q(

√
d′) for squarefree integers d, d′. Then

√
d′ = a + b

√
d for

certain a, b ∈ Q. This implies that d′ + b2d − 2b
√
dd′ = a2. Since d′ is not a square, we

have b 6= 0 and hence
√
dd′ is in Q∗. Since d and d′ are squarefree and have the same sign,

it follows that d = d′

(b) Let α ∈ F = Q(
√
d). Then α can be written as α = a+ b

√
d with a, b ∈ Q. It is easily

verified that the characteristic polynomial is given by fxchar(T ) = T 2 − 2aT + (a2 − b2d)

By Prop. 3.1(c) a necessary and sufficient condition for α = a+ b
√
d to be in OF , is that

2a ∈ Z and a2 − b2d ∈ Z.

Since 2a and a2 − b2d are in Z, so is 4db2 = d(2b)2. Since d is squarefree, this implies
that 2b ∈ Z as well. The second condition implies that (2a)2 − (2b)2d is in 4Z. Since d
is squarefree, this implies that 2a is an even integer if and only if 2b is. If both are even,
the coefficients a, b are in Z confirming that OF contains Z[

√
d]. If 2a and 2b both are

odd, then both a and b are in 1
2 + Z. The fact that (2a)2 − (2b)2d is in 4Z implies that in

this case we must have d ≡ 1 (mod 4). Conversely, when d ≡ 1 (mod 4), every element in

Z[ 1+
√
d

2 ] is integral.

This completes the proof.

Next we discuss discriminants of integral elements ω1, . . . , ωn ∈ F .

Proposition 3.5. Let F be a number field of degree n. Let ω1, . . . , ωn ∈ F .

(a) If ω1, . . . , ωn ∈ OF then ∆(ω1, . . . , ωn) is in Z.

(b) The ring OF admits a Z-basis. In other words, there exist ω1, . . . , ωn ∈ OF for which
OF is equal to the direct sum ⊕n

i=1ωiZ.

(c) All Z-bases have the same discriminant. This discriminant is a non-zero integer. Its
absolute value is minimal among |∆(ω1, . . . , ωn)| where ω1, . . . , ωn are elements of OF

that form a Q-basis of F .

Proof. (a) If the ωi are in OF , so are the products ωiωj . It follows that the traces of ωiωj

are in Z, so that the discriminant ∆(ω1, . . . , ωn) is in Z as well. This proves (a).

By Proposition 3.4 there exists an integral basis ω1, . . . , ωn for F over Q. Indeed, it
suffices to multiply a Q-basis by a suitable non-zero integer. This basis has a non-zero
discriminant which by an (a) is an integer.

Now let ω1, . . . , ωn ∈ OF be a Q-basis of F for which |∆(ω1, . . . , ωn)| is minimal.
Then we have OF

∼= ⊕n
i=1ωiZ. Indeed, if this were not the case, there would exist an

element x =
∑

i λiωi ∈ OF for certain λi ∈ Q, that is not contained in the additive group
generated by the ωi. This implies that λi 6∈ Z for some i. After adding a suitable integral
multiple of ωi to x, we may assume that 0 ≤ λi < 1. Now we replace ωi by x in our
basis. One checks easily that |∆(ω1, . . . , x, . . . , ωn)| = λ2i |∆(ω1, . . . , ωn)| which is integral
by (a), non-zero, but smaller than |∆(ω1, . . . , ωn)|. This contradicts the minimality and
proves (b).
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To see that the discriminant does not depend on the Z-basis {ω1, . . . , ωn}, consider
two Z-bases ω1, . . . , ωn and ω′1, . . . , ω

′
n of OF . Then there exist integers λij ∈ Z such that

ω′i =
∑n

j=1 λijωj for 1 ≤ j ≤ n. Since the same is true when we reverse the roles of the
two bases, the matrix (λij) is invertible. Therefore its determinant is equal to ±1. By
Prop.2.8 we have

∆(ω′1, . . . , ω
′
n) = det(λij)

2∆(ω1, . . . , ωn) = ∆(ω1, . . . , ωn),

as required.

Since F is the field of fractions of OF , any Z-basis ω1, . . . , ωn of OF is automatically
also a Q-basis for F and hence an R-basis for FR and a C-basis for FC. For a number
field of degree n we have the following situation

OF ⊂ F ↪→ FR ↪→ FC∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
n
⊕
i=1

Zωi ⊂
n
⊕
i=1

Qωi ⊂
n
⊕
i=1

Rωi ⊂
n
⊕
i=1

Cωi

The following proposition says that OF is integrally closed.

Proposition 3.6. Let F be a number field. Suppose x ∈ F is a zero of a monic polynomial
in OF [X]. Then x is in OF .

Proof. Suppose x is a zero of Xk + ak−1X
k−1 + . . . a1X + a0. Consider the additive

subgroup M = OF + xOF + . . .+ xk−1OF . Since OF is finitely generated by Prop. 3.5(b),
so is M . Since xM ⊂M , Proposition 3.1 implies that x is in OF , as required.

Definition 3.7. The discriminant ∆F of a number field F is the discriminant of a Z-basis
ω1, . . . , ωn of the ring of integers of OF .

The discriminant of a number field is a non-zero integer. Since 1 is a Z-basis for Z, the
discriminant of Q is 1. The discriminants of quadratic fields are calculated in Exercise 3.6.
In general, it is rather difficult to calculate the discriminant and the ring of integers of a
number field. We will come back to this problem in section 6. The following proposition
is often useful.

Proposition 3.8. Let F be a number field of degree n. Suppose ω1, ω2, . . . , ωn ∈ OF

have the property that ∆(ω1, ω2, . . . , ωn) is a squarefree integer. Then the ω1, . . . , ωn

form a Z-basis of OF . In particular, if there exists α ∈ OF for which the discriminant
∆(1, α, . . . , αn−1) is squarefree, then OF is equal to Z[α].

Proof. It follows from Prop.2.8(c) that ∆(ω1, ω2, . . . , ωn) = det(M)2∆F , where M ∈
GL2(Z) is the matrix expressing the ωi in terms of a Z-base of OF . Since det(M)2 is the
square of an integer the first statement follows. The second statement is a special case.

Example. Let α be a zero of the polynomial f(T ) = T 3 − T − 1 ∈ Z[T ]. Since f(T ) is
irreducible modulo 2, it is irreducible over Q. Put F = Q(α). We compute

∆(1, α, α2) =

 Tr(1) Tr(α) Tr(α2)
Tr(α) Tr(α2) Tr(α3)
Tr(α2) Tr(α3) Tr(α4)

 .
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The trace of 1 is 3. We have

f(T ) = T 3 − T − 1 = (T − φ1(α))(T − φ2(α))(T − φ3(α)).

Let s1 and s2 denote the elementary symmetric functions of degree 1 and 2 in the zeroes
of f(T ). Then s1 = 0 and s2 = 1. It follows that Tr(α) = −s1 = 0 while Tr(α2) =
s21 − 2s2 = 0− 2 · −1 = 2. Since α3 = α + 1, the traces of αk can be computed using the
formula

Tr(αk) = Tr(αk−2) + Tr(αk−3), for k ≥ 3.

We find Tr(α3) = 3 and Tr(α4) = 3 and hence

∆(1, α, α2) = det

 3 0 2
0 2 3
2 3 2

 = −23.

Since 23 is prime and hence squarefree, we may apply Prop.3.8 and conclude that the ring
of integers of Q(α) is Z[α]. The discriminant ∆F is therefore equal to −23.

The fact that the additive group of the ring of integers of a number field F is free of
rank n = [F : Q] has consequences for the structure of the addtive groups of OF -ideals.

Proposition 3.9. Let F be a number field with ring of integers OF . Then
(a) Every non-zero ideal I of OF contains a non-zero integer.
(b) Every ideal I 6= 0 of OF has finite index [OF : I].
(c) There are only finitely many ideals I ⊂ OF of a given norm.
(d) Every ideal I of OF is a finitely generated abelian group.
(e) Every prime ideal I 6= 0 of OF is maximal.

Proof. (a) Let I 6= 0 be an ideal of OF and let 0 6= x ∈ I. Let f(X) = Xn + . . . +
a1X + a0 ∈ Z[X] be the minimum polynomial of x. Then a0 is not zero and since we have
xn + . . .+ a1x = −a0, it is contained in I. This proves (a).
By Prop.5 (b), the additive group of OF is isomorphic to Zn, where n is the degree of F .
Let I ⊂ OF be a non-zero ideal. By (a) it contains a non-zero integer m. It follows that
OF /I is a quotient of OF /(m) ∼= Zn/mZn, which is a finite group. This proves (b). By
Lagrange’s theorem ideals of norm m contain the integer m. Therefore they are in one to
one correspondence with the ideals of the finite ring OF /(m). This proves (c).

To prove (d), let I be an ideal of OF . We may assume that I 6= 0 and choose an integer
m ∈ Z>0 in I. By (b), the ring OF /(m) is finite and therefore the ideal I (mod mOF )
can be generated, as an abelian group, by a finite number of elements x1, . . . , xk ∈ I. It
follows that the additive group I is generated by x1, . . . , xk and mω1, . . . ,mωn, where the
ωi are a Z-basis for the ring of integers OF . We do not need it here, but it follows from
the structure of finitely generated abelian groups that the additive group I is actually
isomorphic to Zn. See section 5.
(e) Let I 6= 0 be a prime ideal of OF . By (b), the ring OF /I is a finite domain. Since
finite domains are fields, I is a maximal ideal.

As a consequence of Proposition 3.9 the following definition is justified:
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Definition. Let F be a number field and let I 6= 0 be an ideal of the ring of integers of
OF of F . We define the norm N(I) of the ideal I by

N(I) = [OF : I] = #(OF /I).

The norm N(I) of an ideal I ⊂ OF is a positive integer.

3.1. Prove Gauss’ Lemma: let R be a unique factorization domain with field of fractions K and
let f ∈ R[T ] be a monic polynomial. If f = g · h in K[T ], with g and h monic polynomials,
then g, h ∈ R[T ]. mm

3.2 Show that for every number field F there exists an integral element α ∈ OF such that
F = Q(α).

3.3 Let F ⊂ K be an extension of number fields. Show that OK ∩ F = OF .
3.4 Show that the polynomial X3 +X−1 ∈ Q[X] is irreducible. Let α denote a zero. Determine

the ring of integers and the discriminant of the number field Q(α).
3.5 Let F and K be two quadratic number fields. Show that F ∼= K if and only if ∆F = ∆K .
3.6 Let d 6= 1 be a squarefree integer. Let F be the quadratic field Q(

√
d). Show that the

discriminant of F is given by

∆F =

{
d if d ≡ 1 (mod 4);
4d if d ≡ 2 or 3 (mod 4).

3.7 Let F = Q( 3
√

20).
(a) Show Z[ 3

√
20, 3
√

50] ⊂ OF .
(b) Let c ∈ Q with c 3

√
20 or c 3

√
50 in OF . Show that c ∈ Z.

Let a, b ∈ Q and x = a 3
√

20 + b 3
√

50 ∈ OF .
(c) Show that 2a, 5b are in Z (Hint: 3

√
20x and 3

√
50x are in OF .)

(d) Show that a, b ∈ Z (hint: x2 is in OF ) and conclude that OF = Z[ 3
√

20, 3
√

50].
3.8 Let F = Q( 3

√
20).

(a) Show that the discriminant of F is equal to −2700.
(b) Let x = a 3

√
20 + b 3

√
50 for certain integers a, b. Show that ∆(1, x, x2) is equal to

−2700(2a3 − 5b3)2.
(c) Show that the equation 2a3 − 5b3 = ±1 has no solutions a, b ∈ Z. Conclude that OF is

not of the form Z[α] (Hint: reduce modulo 7 or 9)
3.9*(Stickelberger 1923) Let F be a number field of degree n and discriminant ∆. Let φi : F ↪→ C

be the embeddings of F into C and let {ω1, ω2, . . . , ωn} be a Z-basis for the ring of integers
of F .
By Sn we denote the symmetric group on n symbols and by An the normal subgroup of even
permutations. We define ∆+ =

∑
τ∈An

∏n

i=1
φi(ωτ(i)) and ∆− =

∑
τ∈Sn−An

∏n

i=1
φi(ωτ(i)).

(a) Prove that ∆ = (∆+ −∆−)2.
(b) Prove, using Galois theory, that ∆+ + ∆− e ∆+∆− are in Z. Conclude that ∆ =

(∆+ + ∆−)2 − 4∆+∆− is congruent to 0 or 1 (mod 4).

6


