3. Rings of integers.

In this section we introduce for an arbitrary number field an analogue of the subring Z of
Q. Combining this with the results of section 1, we obtain an analogue of the inclusion
maps

Z ¢ Q ¢ R c C.

For a number field F' it is the following sequence of subrings
Op Cc F Cc Fr C Fc.

where Fr and F¢ are the rings introduced in section 1. The ring O is the ring of integers
of F.

Definition. Let F' be a number field. An element x € F' is called integral if there exists
a monic polynomial f(T') € Z[T] with f(z) = 0. The subset of integral elements of F' is
denoted by Op.

It is clear that the integrality of an element does not depend on the field F' it contains.
An example of an integral element is i = v/—1, since it is a zero of the monic polynomial
T? +1 € Z[T]. Every n-th root of unity is integral, since it is a zero of T™ — 1. All
ordinary integers n € Z are integral in this new sense because they are zeroes of the
polynomials T" — n.

Lemma 3.1. Let F' be a number field and let x € F'. the following are equivalent
(a) x is integral.

(b) The minimum polynomial f*. (T) of x over Q is in Z[T].

(c) The characteristic polynomial f% (T') of x over Q is in Z[T).

(d) There exists a finitely generated subgroup M # 0 of F' such that xtM C M.

Proof. (a)=(b) Let x be integral and let f(7T) € Z[T] be a monic polynomial such that
f(z) = 0. The minimum polynomial fZ. (T') divides f(T') in Q[T]. Since the minimum
polynomial of x is monic, we have f(T) = g(T)f%,,(T) with ¢(T') € Q[T] monic. By
Gauss’ Lemma (Exer.3.1) both fZ. (T') and ¢g(7T') are in Z[T] as required.

(b)=>(c) This is immediate from Prop.2.7(c).

(c)=(d) Let n be the degree of f% (T') = >, a;T". Let M be the additive group generated
by 1,z,22,...,2" ', The finitely generated group M satisfies tM C M because z-z" ! =
" = —an_lx”_l —...—a1x—ag € M.

d)=(a) Let M # 0 be generated by ey, es,..., ey, € F. Since M C M there exist a;; € Z
such that

xre; = Zaijej for all 1 S 7 S m,

in other words

a1 ai12 e A1m €1 €1

ao1 a2 Ce a2m, €9 ()
=X
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This implies that the determinant det(a;; — « - Id) = 0. Since M # 0, at least one of the
e; is not zero. Therefore x is an eigenvalue and the monic polynomial

f(T) = det(aij -T- Id) S Z[T]

vanishes in x. This proves the lemma.

Proposition 3.2. The set Op of integral elements of a number field F' is a subring of F'.

Proof. It suffices to show that x + y and zy are integral whenever x and y are integral.
Let therefore x,y € F be integral. By Lemma 3.1 there exist non-zero finitely generated
subgroups M; and M; of F', such that xM; C M; and yMy; C M. Let ey,eq, ..., ¢
be generators of My and let fq, fs,..., f,n be generators of My. Let Mj be the additive
subgroup of F' generated by the products e; f; for 1 <i <[l and 1 <j <m. Then we have
(x +y)Ms C M3 and that xyMs C Ms. This proves the proposition.

Proposition 3.3. Let F' be a number field. Then there exists for every x € F' an non-zero
integer in Z so that mx is contained in the ring of integers of Op. In particular, F' is the
field of fractions of OpF.

Proof. Let f(X) = X"4+a, 1 X" ' +... 4+ a1 X +ag € Q[X] be the minimum polynomial
of x. Let m be a common denominator of the coefficients ax. In other words, m # 0 and
may € Z for 0 < k <n — 1. Then we have

m"f(X) = (mX)" + apn_iym(mX)" '+ .. +am"H(mX) + agm”.

Substituting Y = mX we obtain a monic polynomial in Y with coeffients in Z. So its zero
y = mx is integral and hence in Op. This proves the first statement. The second is an
immediate consequence.

It is, in general, a difficult problem to determine the ring of integers of a given number
field. According to Theorem 2.4, every number field F' can be written as F' = Q(«) for
some algebraic number . A similar statement for rings of integers is, in general false:
there exist number fields F' such that Op # Z|[a] for any o« € Op. For example, the ring
of integers of the field Q(4/20) is Z[+/20, v/50]. See exercises 3.7 and 3.8 for a proof that
this ring is not of the form Z[a] for any o € Q(+/20).

For quadratic fields however, the rings of integers are generated by one element and
the calculations are rather easy:

Proposition 3.4. Let F' be a quadratic number field. Then
(a) There exists a unique squarefree integer d € Z such that F = Q(\/E)
(b) Let d # 1 be a squarefree integer. The ring of integers O of F' = Q(\/c_i) is given by

Op = Z[Vd] ifd =2 or 3 (mod 4),

] ifd=1 (mod 4).



Proof. (a) For any a € F' — Q one has that F' = Q(«). The number « is a zero of an
irreducible polynomial f(7') € Q[T] of degree 2. This means that the discriminant d of
f(T) is not a square and we have F = Q(v/d). The field Q(v/d) does not change if we
divide or multiply d by squares of non-zero integers. We conclude that F' = Q(\/E) for
some squarefree integer d.

Suppose Q(vVd) = Q(v/d') for squarefree integers d, d’ Then Vd' = a + bVd for

certain a,b € Q. This implies that d’ + b%d — 2bv/dd’ = a?. Since d’ is not a square, we
have b # 0 and hence vdd' is in Q*. Since d and d’ are squarefree and have the same sign,
it follows that d = d’
(b) Let e € F = Q(+/d). Then a can be written as o = a4 bv/d with a,b € Q. It is easily
verified that the characteristic polynomial is given by f%_(T) = T? — 2aT + (a® — b*d)
By Prop. 3.1(c) a necessary and sufficient condition for v = a + bV/d to be in Op, is that
2a € Z and a® — b*d € Z.

Since 2a and a? — b?d are in Z, so is 4db*® = d(2b)?. Since d is squarefree, this implies
that 2b € Z as well. The second condition implies that (2a)? — (2b)2d is in 4Z. Since d
is squarefree, this implies that 2a is an even integer if and only if 2b is. If both are even,
the coefficients a,b are in Z confirming that O contains Z[v/d]. If 2a and 2b both are
odd, then both a and b are in § + Z. The fact that (2a)? — (2b)2d is in 4Z implies that in
this case we must have d = 1 (mod 4). Conversely, when d =1 (mod 4), every element in
Z[%&] is integral.

This completes the proof.

Next we discuss discriminants of integral elements wq,...,w, € F.

Proposition 3.5. Let F' be a number field of degree n. Let wq,...,w, € F.

(a) If wy,...,w, € Op then A(wy,...,w,) is in Z.

(b) The ring O admits a Z-basis. In other words, there exist wy,...,w, € Op for which
Or is equal to the direct sum @ w;Z.

(c) All Z-bases have the same discriminant. This discriminant is a non-zero integer. Its
absolute value is minimal among |A (w1, ...,w,)| where w1, ...,w, are elements of Op
that form a Q-basis of F'.

Proof. (a) If the w; are in Op, so are the products w;w;. It follows that the traces of w;w;
are in Z, so that the discriminant A(ws,...,w,) is in Z as well. This proves (a).

By Proposition 3.4 there exists an integral basis w1, ...,w, for F' over Q. Indeed, it
suffices to multiply a Q-basis by a suitable non-zero integer. This basis has a non-zero
discriminant which by an (a) is an integer.

Now let wy,...,w, € Op be a Q-basis of F' for which |A(ws,...,w,)| is minimal.
Then we have Op = @' w;Z. Indeed, if this were not the case, there would exist an
element z = ). \jw; € O for certain \; € Q, that is not contained in the additive group
generated by the w;. This implies that \; € Z for some i. After adding a suitable integral
multiple of w; to x, we may assume that 0 < \; < 1. Now we replace w; by z in our
basis. One checks easily that |A(wy,...,,...,wn)| = A?|A(wy, .. .,w,)| which is integral
by (a), non-zero, but smaller than |A(ws,...,wy,)|. This contradicts the minimality and
proves (b).



To see that the discriminant does not depend on the Z-basis {w1,...,wy}, consider
two Z-bases w1, ...,w, and w,...,w, of Op. Then there exist integers \;; € Z such that
wi = Z?:1 Aijw; for 1 < 7 < n. Since the same is true when we reverse the roles of the
two bases, the matrix (\;;) is invertible. Therefore its determinant is equal to +1. By
Prop.2.8 we have

AW, .. wh) = det(Ni)?Awr, - .. wn) = Awr, . . ., wn),
as required.

Since F' is the field of fractions of O, any Z-basis w1, ...,w, of Op is automatically
also a Q-basis for F' and hence an R-basis for Fr and a C-basis for Fe. For a number
field of degree n we have the following situation

Or - F — Fr — Fc

@sz - @sz - @Rw C %Cwi
i=1

The following proposmon says that Or is zntegmlly closed.

Proposition 3.6. Let F' be a number field. Suppose x € F' is a zero of a monic polynomial
in Op[X]. Then z is in Op.

Proof. Suppose z is a zero of X* 4+ a1 X* 1 + ...a1X + a9. Consider the additive
subgroup M = Op +zO0p + ...+ 2" 'Op. Since Op is finitely generated by Prop. 3.5(b),
so is M. Since M C M, Proposition 3.1 implies that x is in Op, as required.

Definition 3.7. The discriminant Ar of a number field F is the discriminant of a Z-basis
w1, . ..,wy, of the ring of integers of Op.

The discriminant of a number field is a non-zero integer. Since 1 is a Z-basis for Z, the
discriminant of Q is 1. The discriminants of quadratic fields are calculated in Exercise 3.6.
In general, it is rather difficult to calculate the discriminant and the ring of integers of a
number field. We will come back to this problem in section 6. The following proposition
is often useful.

Proposition 3.8. Let F' be a number field of degree n. Suppose wi,ws,...,w, € Op

have the property that A(wi,ws,...,wy,) Is a squarefree integer. Then the wq,...,wy,
form a Z-basis of Op. In particular, if there exists o € Op for which the discriminant
A(l,a,...,a™ 1) is squarefree, then OF is equal to Z[al].

Proof. It follows from Prop.2.8(c) that A(wy,ws,...,w,) = det(M)?Ap, where M €
GLy(Z) is the matrix expressing the w; in terms of a Z-base of O. Since det(M)? is the
square of an integer the first statement follows. The second statement is a special case.

Example. Let a be a zero of the polynomial f(T) = T3 — T — 1 € Z[T]. Since f(T) is
irreducible modulo 2, it is irreducible over Q. Put F' = Q(«a). We compute
Tr(l) Tr(w) (a?)

A(l,a,0®) = [ Tr(a) Tr(e?) Tr(a®)

Tr(a?) Tr(a®) Tr(a?)
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The trace of 1 is 3. We have

) =T° =T = 1= (T = ¢$1(a))(T — $2())(T — p3()).

Let s; and s, denote the elementary symmetric functions of degree 1 and 2 in the zeroes
of f(T). Then s; = 0 and s, = 1. It follows that Tr(a) = —s; = 0 while Tr(a?) =
§2 — 255 =0—2-—1=2. Since a® = a + 1, the traces of o can be computed using the
formula

Tr(a®) = Tr(a®72) + Tr(a*3),  for k > 3.

We find Tr(a?®) = 3 and Tr(a?) = 3 and hence

A1, a, 0?) = det = —23.

N O W
w N O
N W N

Since 23 is prime and hence squarefree, we may apply Prop.3.8 and conclude that the ring
of integers of Q(«) is Z[a]. The discriminant Ap is therefore equal to —23.

The fact that the additive group of the ring of integers of a number field F' is free of
rank n = [F : Q] has consequences for the structure of the addtive groups of Opg-ideals.

Proposition 3.9. Let F' be a number field with ring of integers Op. Then
(a) Every non-zero ideal I of O contains a non-zero integer.

(b) Every ideal I # 0 of O has finite index [Op : I].

(c) There are only finitely many ideals I C Op of a given norm.

(d) Every ideal I of O is a finitely generated abelian group.

(e) Every prime ideal I # 0 of Op is maximal.

Proof. (a) Let I # 0 be an ideal of Op and let 0 # = € I. Let f(X) = X" 4+ ... +
a1 X + ap € Z[X] be the minimum polynomial of . Then ag is not zero and since we have
"™ 4 ...4+ a1x = —ayp, it is contained in I. This proves (a).
By Prop.5 (b), the additive group of Op is isomorphic to Z™, where n is the degree of F.
Let I C Op be a non-zero ideal. By (a) it contains a non-zero integer m. It follows that
Or/I is a quotient of Op/(m) = Z™/mZ"™, which is a finite group. This proves (b). By
Lagrange’s theorem ideals of norm m contain the integer m. Therefore they are in one to
one correspondence with the ideals of the finite ring Og/(m). This proves (c).

To prove (d), let I be an ideal of Or. We may assume that I # 0 and choose an integer
m € Zso in I. By (b), the ring Op/(m) is finite and therefore the ideal I (mod mOp)
can be generated, as an abelian group, by a finite number of elements xq,...,xx € I. It
follows that the additive group I is generated by x4, ..., and mws, ..., mw,, where the
w; are a Z-basis for the ring of integers Op. We do not need it here, but it follows from
the structure of finitely generated abelian groups that the additive group [ is actually
isomorphic to Z™. See section 5.
(e) Let I # 0 be a prime ideal of Op. By (b), the ring Op/I is a finite domain. Since
finite domains are fields, I is a maximal ideal.

As a consequence of Proposition 3.9 the following definition is justified:
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Definition. Let F' be a number field and let I # 0 be an ideal of the ring of integers of
Op of F. We define the norm N(I) of the ideal I by

N(I) = [Or : I] = #(Or/1).

The norm N (I) of an ideal I C Op is a positive integer.

3.1.

3.2

3.3
3.4

3.5
3.6

3.7

3.8

Prove Gauss’ Lemma: let R be a unique factorization domain with field of fractions K and
let f € R[T] be a monic polynomial. If f = g¢-h in K[T], with g and h monic polynomials,
then g, h € R[T]. mm

Show that for every number field F' there exists an integral element @ € Op such that
F =Q(a).

Let FF C K be an extension of number fields. Show that Ox N F = Op.

Show that the polynomial X*+ X —1 € Q[X] is irreducible. Let a denote a zero. Determine
the ring of integers and the discriminant of the number field Q(«).

Let F' and K be two quadratic number fields. Show that F' = K if and only if Ap = Ak.
Let d # 1 be a squarefree integer. Let F' be the quadratic field Q(\/E) Show that the
discriminant of F' is given by

A — d ifd=1 (mod 4);
7 14d ifd=2or 3 (mod 4).

Let F = Q(+/20).
(a) Show Z[/20, V/50] C Ok.
(b) Let ¢ € Q with ¢4/20 or ¢¢/50 in Or. Show that ¢ € Z.
Let a,b € Q and r = av/20 + bv/50 € Op.
(c) Show that 2a, 5b are in Z (Hint: /20z and V/50z are in OF.)
(d) Show that a,b € Z (hint: z* is in OF) and conclude that O = Z[/20, V/50].
Let F = Q(+/20).
(a) Show that the discriminant of F' is equal to —2700.
(b) Let = a+v/20 + by/50 for certain integers a,b. Show that A(1,z,z?) is equal to
—2700(2a® — 5b°)2.
(c) Show that the equation 2a® — 56 = 41 has no solutions a,b € Z. Conclude that OF is
not of the form Z[a| (Hint: reduce modulo 7 or 9)

3.9%(Stickelberger 1923) Let F' be a number field of degree n and discriminant A. Let ¢; : FF — C

be the embeddings of F into C and let {wi,wa,...,ws} be a Z-basis for the ring of integers
of F.
By S, we denote the symmetric group on n symbols and by A, the normal subgroup of even
permutations. We define A™ = Yorea, II-, ¢i(wri)) and A™ = DS, A, [T, dilwray)-
(a) Prove that A = (AT — A7),
(b) Prove, using Galois theory, that AT + A~ e ATA™ are in Z. Conclude that A =
(AT + A7) —4AT A is congruent to 0 or 1 (mod 4).



