3. Rings of integers.

In this section we introduce for an arbitrary number field an analogue of the subring \mathbf{Z} of **Q.** Combining this with the results of section 1, we obtain an analogue of the inclusion maps

> \mathbf{Z} Q \subset \subset \mathbf{R} \subset С.

For a number field F it is the following sequence of subrings

$$O_F \subset F \subset F_{\mathbf{R}} \subset F_{\mathbf{C}}.$$

where $F_{\mathbf{R}}$ and $F_{\mathbf{C}}$ are the rings introduced in section 1. The ring O_F is the ring of integers of F.

Definition. Let F be a number field. An element $x \in F$ is called *integral* if there exists a monic polynomial $f(T) \in \mathbf{Z}[T]$ with f(x) = 0. The subset of integral elements of F is denoted by O_F .

It is clear that the integrality of an element does not depend on the field F it contains. An example of an integral element is $i = \sqrt{-1}$, since it is a zero of the monic polynomial $T^2 + 1 \in \mathbb{Z}[T]$. Every *n*-th root of unity is integral, since it is a zero of $T^n - 1$. All ordinary integers $n \in \mathbf{Z}$ are integral in this new sense because they are zeroes of the polynomials T - n.

Lemma 3.1. Let F be a number field and let $x \in F$. the following are equivalent (a) x is integral.

(a) The minimum polynomial $f_{\min}^x(T)$ of x over \mathbf{Q} is in $\mathbf{Z}[T]$. (c) The characteristic polynomial $f_{\mathrm{char}}^x(T)$ of x over \mathbf{Q} is in $\mathbf{Z}[T]$.

(d) There exists a finitely generated subgroup $M \neq 0$ of F such that $xM \subset M$.

Proof. (a) \Rightarrow (b) Let x be integral and let $f(T) \in \mathbf{Z}[T]$ be a monic polynomial such that f(x) = 0. The minimum polynomial $f_{\min}^x(T)$ divides f(T) in $\mathbf{Q}[T]$. Since the minimum polynomial of x is monic, we have $f(T) = g(T)f_{\min}^x(T)$ with $g(T) \in \mathbf{Q}[T]$ monic. By Gauss' Lemma (Exer.3.1) both $f_{\min}^x(T)$ and g(T) are in $\mathbf{Z}[T]$ as required.

 $(b) \Rightarrow (c)$ This is immediate from Prop.2.7(c).

 $(c) \Rightarrow (d)$ Let *n* be the degree of $f_{char}^x(T) = \sum_i a_i T^i$. Let *M* be the additive group generated by $1, x, x^2, \ldots, x^{n-1}$. The finitely generated group *M* satisfies $xM \subset M$ because $x \cdot x^{n-1} =$ $x^n = -a_{n-1}x^{n-1} - \ldots - a_1x - a_0 \in M.$

 $(d) \Rightarrow (a)$ Let $M \neq 0$ be generated by $e_1, e_2, \ldots, e_m \in F$. Since $xM \subset M$ there exist $a_{ij} \in \mathbf{Z}$ such that

$$xe_i = \sum_{j=1}^m a_{ij}e_j$$
 for all $1 \le i \le m$,

in other words

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{pmatrix} = x \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{pmatrix}$$

This implies that the determinant $det(a_{ij} - x \cdot Id) = 0$. Since $M \neq 0$, at least one of the e_i is not zero. Therefore x is an eigenvalue and the monic polynomial

$$f(T) = \det(a_{ij} - T \cdot \mathrm{Id}) \in \mathbf{Z}[T]$$

vanishes in x. This proves the lemma.

Proposition 3.2. The set O_F of integral elements of a number field F is a subring of F.

Proof. It suffices to show that $x \pm y$ and xy are integral whenever x and y are integral. Let therefore $x, y \in F$ be integral. By Lemma 3.1 there exist non-zero finitely generated subgroups M_1 and M_2 of F, such that $xM_1 \subset M_1$ and $yM_2 \subset M_2$. Let e_1, e_2, \ldots, e_l be generators of M_1 and let f_1, f_2, \ldots, f_m be generators of M_2 . Let M_3 be the additive subgroup of F generated by the products $e_i f_j$ for $1 \le i \le l$ and $1 \le j \le m$. Then we have $(x \pm y)M_3 \subset M_3$ and that $xyM_3 \subset M_3$. This proves the proposition.

Proposition 3.3. Let F be a number field. Then there exists for every $x \in F$ an non-zero integer in \mathbb{Z} so that mx is contained in the ring of integers of O_F . In particular, F is the field of fractions of O_F .

Proof. Let $f(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0 \in \mathbf{Q}[X]$ be the minimum polynomial of x. Let m be a common denominator of the coefficients a_k . In other words, $m \neq 0$ and $ma_k \in \mathbf{Z}$ for $0 \leq k \leq n-1$. Then we have

$$m^n f(X) = (mX)^n + a_{n-1}m(mX)^{n-1} + \ldots + a_1m^{n-1}(mX) + a_0m^n.$$

Substituting Y = mX we obtain a monic polynomial in Y with coefficients in **Z**. So its zero y = mx is integral and hence in O_F . This proves the first statement. The second is an immediate consequence.

It is, in general, a difficult problem to determine the ring of integers of a given number field. According to Theorem 2.4, every number field F can be written as $F = \mathbf{Q}(\alpha)$ for some algebraic number α . A similar statement for rings of integers is, in general false: there exist number fields F such that $O_F \neq \mathbf{Z}[\alpha]$ for any $\alpha \in O_F$. For example, the ring of integers of the field $\mathbf{Q}(\sqrt[3]{20})$ is $\mathbf{Z}[\sqrt[3]{20}, \sqrt[3]{50}]$. See exercises 3.7 and 3.8 for a proof that this ring is not of the form $\mathbf{Z}[\alpha]$ for any $\alpha \in \mathbf{Q}(\sqrt[3]{20})$.

For quadratic fields however, the rings of integers are generated by one element and the calculations are rather easy:

Proposition 3.4. Let F be a quadratic number field. Then

(a) There exists a unique squarefree integer $d \in \mathbb{Z}$ such that $F = \mathbb{Q}(\sqrt{d})$.

(b) Let $d \neq 1$ be a squarefree integer. The ring of integers O_F of $F = \mathbf{Q}(\sqrt{d})$ is given by

$$O_F = \mathbf{Z}[\sqrt{d}] \qquad \text{if } d \equiv 2 \text{ or } 3 \pmod{4},$$
$$= \mathbf{Z}[\frac{1+\sqrt{d}}{2}] \qquad \text{if } d \equiv 1 \pmod{4}.$$

Proof. (a) For any $\alpha \in F - \mathbf{Q}$ one has that $F = \mathbf{Q}(\alpha)$. The number α is a zero of an irreducible polynomial $f(T) \in \mathbf{Q}[T]$ of degree 2. This means that the discriminant d of f(T) is not a square and we have $F = \mathbf{Q}(\sqrt{d})$. The field $\mathbf{Q}(\sqrt{d})$ does not change if we divide or multiply d by squares of non-zero integers. We conclude that $F = \mathbf{Q}(\sqrt{d})$ for some squarefree integer d.

Suppose $\mathbf{Q}(\sqrt{d}) = \mathbf{Q}(\sqrt{d'})$ for squarefree integers d, d'. Then $\sqrt{d'} = a + b\sqrt{d}$ for certain $a, b \in \mathbf{Q}$. This implies that $d' + b^2d - 2b\sqrt{dd'} = a^2$. Since d' is not a square, we have $b \neq 0$ and hence $\sqrt{dd'}$ is in \mathbf{Q}^* . Since d and d' are squarefree and have the same sign, it follows that d = d'

(b) Let $\alpha \in F = \mathbf{Q}(\sqrt{d})$. Then α can be written as $\alpha = a + b\sqrt{d}$ with $a, b \in \mathbf{Q}$. It is easily verified that the characteristic polynomial is given by $f_{char}^x(T) = T^2 - 2aT + (a^2 - b^2d)$ By Prop. 3.1(c) a necessary and sufficient condition for $\alpha = a + b\sqrt{d}$ to be in O_F , is that $2a \in \mathbf{Z}$ and $a^2 - b^2d \in \mathbf{Z}$.

Since 2a and $a^2 - b^2 d$ are in \mathbb{Z} , so is $4db^2 = d(2b)^2$. Since d is squarefree, this implies that $2b \in \mathbb{Z}$ as well. The second condition implies that $(2a)^2 - (2b)^2 d$ is in $4\mathbb{Z}$. Since dis squarefree, this implies that 2a is an even integer if and only if 2b is. If both are even, the coefficients a, b are in \mathbb{Z} confirming that O_F contains $\mathbb{Z}[\sqrt{d}]$. If 2a and 2b both are odd, then both a and b are in $\frac{1}{2} + \mathbb{Z}$. The fact that $(2a)^2 - (2b)^2 d$ is in $4\mathbb{Z}$ implies that in this case we must have $d \equiv 1 \pmod{4}$. Conversely, when $d \equiv 1 \pmod{4}$, every element in $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ is integral.

This completes the proof.

Next we discuss *discriminants* of integral elements $\omega_1, \ldots, \omega_n \in F$.

Proposition 3.5. Let F be a number field of degree n. Let $\omega_1, \ldots, \omega_n \in F$.

- (a) If $\omega_1, \ldots, \omega_n \in O_F$ then $\Delta(\omega_1, \ldots, \omega_n)$ is in **Z**.
- (b) The ring O_F admits a **Z**-basis. In other words, there exist $\omega_1, \ldots, \omega_n \in O_F$ for which O_F is equal to the direct sum $\bigoplus_{i=1}^n \omega_i \mathbf{Z}$.
- (c) All **Z**-bases have the same discriminant. This discriminant is a non-zero integer. Its absolute value is minimal among $|\Delta(\omega_1, \ldots, \omega_n)|$ where $\omega_1, \ldots, \omega_n$ are elements of O_F that form a **Q**-basis of F.

Proof. (a) If the ω_i are in O_F , so are the products $\omega_i \omega_j$. It follows that the traces of $\omega_i \omega_j$ are in \mathbf{Z} , so that the discriminant $\Delta(\omega_1, \ldots, \omega_n)$ is in \mathbf{Z} as well. This proves (a).

By Proposition 3.4 there exists an integral basis $\omega_1, \ldots, \omega_n$ for F over \mathbf{Q} . Indeed, it suffices to multiply a \mathbf{Q} -basis by a suitable non-zero integer. This basis has a non-zero discriminant which by an (a) is an integer.

Now let $\omega_1, \ldots, \omega_n \in O_F$ be a **Q**-basis of F for which $|\Delta(\omega_1, \ldots, \omega_n)|$ is minimal. Then we have $O_F \cong \bigoplus_{i=1}^n \omega_i \mathbf{Z}$. Indeed, if this were not the case, there would exist an element $x = \sum_i \lambda_i \omega_i \in O_F$ for certain $\lambda_i \in \mathbf{Q}$, that is not contained in the additive group generated by the ω_i . This implies that $\lambda_i \notin \mathbf{Z}$ for some i. After adding a suitable integral multiple of ω_i to x, we may assume that $0 \leq \lambda_i < 1$. Now we replace ω_i by x in our basis. One checks easily that $|\Delta(\omega_1, \ldots, x, \ldots, \omega_n)| = \lambda_i^2 |\Delta(\omega_1, \ldots, \omega_n)|$ which is integral by (a), non-zero, but smaller than $|\Delta(\omega_1, \ldots, \omega_n)|$. This contradicts the minimality and proves (b). To see that the discriminant does not depend on the **Z**-basis $\{\omega_1, \ldots, \omega_n\}$, consider two **Z**-bases $\omega_1, \ldots, \omega_n$ and $\omega'_1, \ldots, \omega'_n$ of O_F . Then there exist integers $\lambda_{ij} \in \mathbf{Z}$ such that $\omega'_i = \sum_{j=1}^n \lambda_{ij}\omega_j$ for $1 \leq j \leq n$. Since the same is true when we reverse the roles of the two bases, the matrix (λ_{ij}) is invertible. Therefore its determinant is equal to ± 1 . By Prop.2.8 we have

$$\Delta(\omega'_1,\ldots,\omega'_n) = \det(\lambda_{ij})^2 \Delta(\omega_1,\ldots,\omega_n) = \Delta(\omega_1,\ldots,\omega_n),$$

as required.

Since F is the field of fractions of O_F , any **Z**-basis $\omega_1, \ldots, \omega_n$ of O_F is automatically also a **Q**-basis for F and hence an **R**-basis for $F_{\mathbf{R}}$ and a **C**-basis for $F_{\mathbf{C}}$. For a number field of degree n we have the following situation

The following proposition says that O_F is *integrally closed*.

Proposition 3.6. Let F be a number field. Suppose $x \in F$ is a zero of a monic polynomial in $O_F[X]$. Then x is in O_F .

Proof. Suppose x is a zero of $X^k + a_{k-1}X^{k-1} + \ldots a_1X + a_0$. Consider the additive subgroup $M = O_F + xO_F + \ldots + x^{k-1}O_F$. Since O_F is finitely generated by Prop. 3.5(b), so is M. Since $xM \subset M$, Proposition 3.1 implies that x is in O_F , as required.

Definition 3.7. The discriminant Δ_F of a number field F is the discriminant of a **Z**-basis $\omega_1, \ldots, \omega_n$ of the ring of integers of O_F .

The discriminant of a number field is a non-zero integer. Since 1 is a **Z**-basis for **Z**, the discriminant of **Q** is 1. The discriminants of quadratic fields are calculated in Exercise 3.6. In general, it is rather difficult to calculate the discriminant and the ring of integers of a number field. We will come back to this problem in section 6. The following proposition is often useful.

Proposition 3.8. Let F be a number field of degree n. Suppose $\omega_1, \omega_2, \ldots, \omega_n \in O_F$ have the property that $\Delta(\omega_1, \omega_2, \ldots, \omega_n)$ is a squarefree integer. Then the $\omega_1, \ldots, \omega_n$ form a **Z**-basis of O_F . In particular, if there exists $\alpha \in O_F$ for which the discriminant $\Delta(1, \alpha, \ldots, \alpha^{n-1})$ is squarefree, then O_F is equal to $\mathbf{Z}[\alpha]$.

Proof. It follows from Prop.2.8(c) that $\Delta(\omega_1, \omega_2, \ldots, \omega_n) = \det(M)^2 \Delta_F$, where $M \in \operatorname{GL}_2(\mathbb{Z})$ is the matrix expressing the ω_i in terms of a \mathbb{Z} -base of O_F . Since $\det(M)^2$ is the square of an integer the first statement follows. The second statement is a special case.

Example. Let α be a zero of the polynomial $f(T) = T^3 - T - 1 \in \mathbb{Z}[T]$. Since f(T) is irreducible modulo 2, it is irreducible over \mathbb{Q} . Put $F = \mathbb{Q}(\alpha)$. We compute

$$\Delta(1,\alpha,\alpha^2) = \begin{pmatrix} \operatorname{Tr}(1) & \operatorname{Tr}(\alpha) & \operatorname{Tr}(\alpha^2) \\ \operatorname{Tr}(\alpha) & \operatorname{Tr}(\alpha^2) & \operatorname{Tr}(\alpha^3) \\ \operatorname{Tr}(\alpha^2) & \operatorname{Tr}(\alpha^3) & \operatorname{Tr}(\alpha^4) \end{pmatrix}.$$

The trace of 1 is 3. We have

$$f(T) = T^3 - T - 1 = (T - \phi_1(\alpha))(T - \phi_2(\alpha))(T - \phi_3(\alpha)).$$

Let s_1 and s_2 denote the elementary symmetric functions of degree 1 and 2 in the zeroes of f(T). Then $s_1 = 0$ and $s_2 = 1$. It follows that $\text{Tr}(\alpha) = -s_1 = 0$ while $\text{Tr}(\alpha^2) = s_1^2 - 2s_2 = 0 - 2 \cdot -1 = 2$. Since $\alpha^3 = \alpha + 1$, the traces of α^k can be computed using the formula

$$\operatorname{Tr}(\alpha^k) = \operatorname{Tr}(\alpha^{k-2}) + \operatorname{Tr}(\alpha^{k-3}), \quad \text{for } k \ge 3.$$

We find $Tr(\alpha^3) = 3$ and $Tr(\alpha^4) = 3$ and hence

r

$$\Delta(1, \alpha, \alpha^2) = \det \begin{pmatrix} 3 & 0 & 2\\ 0 & 2 & 3\\ 2 & 3 & 2 \end{pmatrix} = -23$$

Since 23 is prime and hence squarefree, we may apply Prop.3.8 and conclude that the ring of integers of $\mathbf{Q}(\alpha)$ is $\mathbf{Z}[\alpha]$. The discriminant Δ_F is therefore equal to -23.

The fact that the additive group of the ring of integers of a number field F is free of rank $n = [F : \mathbf{Q}]$ has consequences for the structure of the additive groups of O_F -ideals.

Proposition 3.9. Let F be a number field with ring of integers O_F . Then

- (a) Every non-zero ideal I of O_F contains a non-zero integer.
- (b) Every ideal $I \neq 0$ of O_F has finite index $[O_F : I]$.
- (c) There are only finitely many ideals $I \subset O_F$ of a given norm.
- (d) Every ideal I of O_F is a finitely generated abelian group.
- (e) Every prime ideal $I \neq 0$ of O_F is maximal.

Proof. (a) Let $I \neq 0$ be an ideal of O_F and let $0 \neq x \in I$. Let $f(X) = X^n + \ldots + a_1X + a_0 \in \mathbb{Z}[X]$ be the minimum polynomial of x. Then a_0 is not zero and since we have $x^n + \ldots + a_1x = -a_0$, it is contained in I. This proves (a).

By Prop.5 (b), the additive group of O_F is isomorphic to \mathbb{Z}^n , where n is the degree of F. Let $I \subset O_F$ be a non-zero ideal. By (a) it contains a non-zero integer m. It follows that O_F/I is a quotient of $O_F/(m) \cong \mathbb{Z}^n/m\mathbb{Z}^n$, which is a finite group. This proves (b). By Lagrange's theorem ideals of norm m contain the integer m. Therefore they are in one to one correspondence with the ideals of the finite ring $O_F/(m)$. This proves (c).

To prove (d), let I be an ideal of O_F . We may assume that $I \neq 0$ and choose an integer $m \in \mathbb{Z}_{>0}$ in I. By (b), the ring $O_F/(m)$ is finite and therefore the ideal $I \pmod{mO_F}$ can be generated, as an abelian group, by a finite number of elements $x_1, \ldots, x_k \in I$. It follows that the additive group I is generated by x_1, \ldots, x_k and $m\omega_1, \ldots, m\omega_n$, where the ω_i are a \mathbb{Z} -basis for the ring of integers O_F . We do not need it here, but it follows from the structure of finitely generated abelian groups that the additive group I is actually isomorphic to \mathbb{Z}^n . See section 5.

(e) Let $I \neq 0$ be a prime ideal of O_F . By (b), the ring O_F/I is a finite domain. Since finite domains are fields, I is a maximal ideal.

As a consequence of Proposition 3.9 the following definition is justified:

Definition. Let F be a number field and let $I \neq 0$ be an ideal of the ring of integers of O_F of F. We define the norm N(I) of the ideal I by

$$N(I) = [O_F : I] = #(O_F/I).$$

The norm N(I) of an ideal $I \subset O_F$ is a positive integer.

- 3.1. Prove Gauss' Lemma: let R be a unique factorization domain with field of fractions K and let $f \in R[T]$ be a monic polynomial. If $f = g \cdot h$ in K[T], with g and h monic polynomials, then $g, h \in R[T]$. mm
- 3.2 Show that for every number field F there exists an *integral* element $\alpha \in O_F$ such that $F = \mathbf{Q}(\alpha).$
- 3.3 Let $F \subset K$ be an extension of number fields. Show that $O_K \cap F = O_F$.
- 3.4 Show that the polynomial $X^3 + X 1 \in \mathbf{Q}[X]$ is irreducible. Let α denote a zero. Determine the ring of integers and the discriminant of the number field $\mathbf{Q}(\alpha)$.
- 3.5 Let F and K be two quadratic number fields. Show that $F \cong K$ if and only if $\Delta_F = \Delta_K$.
- 3.6 Let $d \neq 1$ be a squarefree integer. Let F be the quadratic field $\mathbf{Q}(\sqrt{d})$. Show that the discriminant of F is given by

$$\Delta_F = \begin{cases} d & \text{if } d \equiv 1 \pmod{4}; \\ 4d & \text{if } d \equiv 2 \text{ or } 3 \pmod{4}. \end{cases}$$

3.7 Let $F = \mathbf{Q}(\sqrt[3]{20})$.

- (a) Show $\mathbf{Z}[\sqrt[3]{20}, \sqrt[3]{50}] \subset O_F$.
- (b) Let $c \in \mathbf{Q}$ with $c\sqrt[3]{20}$ or $c\sqrt[3]{50}$ in O_F . Show that $c \in \mathbf{Z}$. Let $a, b \in \mathbf{Q}$ and $x = a\sqrt[3]{20} + b\sqrt[3]{50} \in O_F$.
- (c) Show that 2a, 5b are in **Z** (Hint: $\sqrt[3]{20}x$ and $\sqrt[3]{50}x$ are in O_F .)
- (d) Show that $a, b \in \mathbf{Z}$ (hint: x^2 is in O_F) and conclude that $O_F = \mathbf{Z}[\sqrt[3]{20}, \sqrt[3]{50}]$.
- 3.8 Let $F = \mathbf{Q}(\sqrt[3]{20})$.
 - (a) Show that the discriminant of F is equal to -2700.
 - (b) Let $x = a\sqrt[3]{20} + b\sqrt[3]{50}$ for certain integers a, b. Show that $\Delta(1, x, x^2)$ is equal to $-2700(2a^3-5b^3)^2$.
 - (c) Show that the equation $2a^3 5b^3 = \pm 1$ has no solutions $a, b \in \mathbb{Z}$. Conclude that O_F is not of the form $\mathbf{Z}[\alpha]$ (Hint: reduce modulo 7 or 9)
- 3.9*(Stickelberger 1923) Let F be a number field of degree n and discriminant Δ . Let $\phi_i : F \hookrightarrow \mathbf{C}$ be the embeddings of F into C and let $\{\omega_1, \omega_2, \ldots, \omega_n\}$ be a Z-basis for the ring of integers of F.

By S_n we denote the symmetric group on n symbols and by A_n the normal subgroup of even permutations. We define $\Delta^+ = \sum_{\tau \in A_n} \prod_{i=1}^n \phi_i(\omega_{\tau(i)})$ and $\Delta^- = \sum_{\tau \in S_n - A_n} \prod_{i=1}^n \phi_i(\omega_{\tau(i)})$. (a) Prove that $\Delta = (\Delta^+ - \Delta^-)^2$.

- (b) Prove, using Galois theory, that $\Delta^+ + \Delta^- \in \Delta^+ \Delta^-$ are in **Z**. Conclude that $\Delta =$ $(\Delta^+ + \Delta^-)^2 - 4\Delta^+\Delta^-$ is congruent to 0 or 1 (mod 4).